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Bistable and tristable soliton switching in collinear arrays of linearly coupled waveguides
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The soliton switching in an array of three, linearly coupled waveguides is investigated. Supported by a
variational model, we show that a novel nonlinear switching among stable localized states is possible in long
couplers. The numerical integrations of the governing equations confirm this interesting phenomenon. These
results can be extended to asymmetrical nonlinear directional couplers, where the asymmetry is in the nonlin-
ear coefficients. The tristable operational mode is investigated too and the model furnishes valuable indications
in order to realize it. The model also allows a physical insight into the more general problem of steering in
arrays with a large number of waveguides. Finally, an exact, antisymmetric solution of the governing equations
of the three-waveguide array is also investigated, because it shows dynamical properties that might be useful
in all-optical switching[S1063-651X97)08007-Q

PACS numbgs): 42.65.Tg, 42.65.Wi

INTRODUCTION solutions have a stable branch and, as we show elsewhere in

detail [21], their appearance can be explained as a crossing

Soliton switching in nonlinear directional couplers of a separatrix in the phase space of a dynamical system in

(NLDC's) [1] is regarded as a possible mechanism for all-the pulse parameters derived from a reduced Lagrangian ap-
optical signal processin@] and hence it has been the object proximation. In fact, if the energy is increased, orbits move
of experimental2] as well as analytical and numerical in- away from the region of coupling towards another region of

vestigationg 3—8§|. almost constant pulse amplitude and rotating phase, i.e., lo-
The switching of cw signal in arrays of more than two calized states.
waveguideg9—11], such as multicore fibefd.2] or coupled This transition is similar to that which occurs in the

semiconductor waveguidg$3], is also under current inves- NLDC at the switching thresholfil,4,6, though an impor-
tigation. This interest stems from the fact that sharpetant distinction must be noted. In fact, for the NLDC there
switching characteristics are expected in these de\it@s  exist two symmetric localized statéthe energy being con-
Unfortunately, the growth of the energy threshold for thecentrated in one of the waveguidesach characterized by
switching, as the numbét of waveguides increases, and the the same energy threshold because of the intrinsic symmetry
lack of analytical tools to predict the dynamics have ham-of the device. However, if the number of waveguides is
pered their effective exploitation so far. Eventually, espegreater than 2, several new localized states appear, each
cially in long couplers, chaotic dynamics has been reporte@haracterized by an energy threshold which, in principle,
to arise as soon d$=3 [14,15. may be different from that of other solutions. The potential
Hence the nonlinear switching of cw signals as well as ofof multistable operation of these devices is thus clear, if
solitonlike pulses has been numerically investigated for lim-some perturbation is found that, when applied, the system
ited sets of initial conditions in the case of collinear half-beatmoves from an initial high energy mode to a final stable state
length three-waveguide array$4,15. Those results show at lower energy. The net loss in such a scenario would ac-
the predicted sharper switching characteristic, when a pulseount for radiation, which has been already indicated as a
is launched in one of the side waveguides and no pulses araajor feature in the context of the transition from unstable to
present in the remaining waveguides. stable solutions in the NLDC22] and of the relaxation os-
Though this is the simplest configuration, one might ex-cillations while reaching final state both in NLD([82,23
pect a richer dynamics to appear if other initial conditionsand three-waveguide arraja1,24.
are used and this paper is aimed to be a step in the direction In this paper we will concentrate on the case of a three-
of better understanding the behavior of these systems andaveguide collinear array. First, we will show that by ex-
their potential use in all-optical signal processing. ploiting the energy gap among two different stable localized
Besides the coupling dynamical regimes, waveguide arsolutions, it is possible to obtain a bistable switching from
rays possess a large family of steady-state solufidfsl7.  this device. Note that this behavior is very different, from the
Particularly interesting are the so called localized states, i.ephysical viewpoint, from that of the NLDC, where the stable
those solutions for which most of the energy is concentratedtate can be broken only to initiate the typical linearlike cou-
in a single waveguide of the arrd#8—20. Many of these pling dynamics. This stems from the fact that in the NLDC
there is no energy gap, as said, among the states. This con-
dition is necessary, as we will show, in order to compensate
*Permanent address: Department of Mathematics and Statisticthe loss due to radiation, during the state commutation.

University of New Mexico, Albuguerque, New Mexico 87131. Eventually, if symmetrical initial conditions are applied, it
"Present address: Departament de Fisica, Universitat de les Illds worth noting that the three-waveguide device is equivalent
Balears, Palma de Mallorca, Spain. to an asymmetrical NLD@25] and bistability would occur
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too. In particular, our case would correspond to a NLDCof the Lagrangian density
where the cores have equal linear properties and a mismatch
in the nonlinearity. Recently the chance of bistability in cou- 3 ,
plers which present asymmetries in the linear properties of L= Lo+L™ 3
the cores has been suggested [@6]. Moreover, we will n=1
explore possible tristable soliton switching, which is plau-
sible in such a device. Analytical considerations will provide
us useful indications in order to achieve this goal. Our ap- .
. X . . i 1 1

proach will also give enough evidence to explain the reason | =_(q™*q{"—q™g{"*)—Z|g!"|?+ =|q™|* (4)
why the steering of localized solutions has proved to be hard 2 2 2
to achieve in arrays with a large number of waveguides un-
less strong actions are takghil,18—2Q. and

We will also study the dynamical evolution of an exact, 3
antisymmetric stationary solution of the governing equation. | ;
In fact, the results of the analytical approach give strong "=-K q(l>*q(2)+c.c.+q(3)*q(2>+c.c.—nzl a™?],
indications that a slowin the propagation distangelynam- (5)
ics is associated to this input condition. The numerical solu-
tions final stable state is observed if energy is above thevhere c.c. means the complex conjugate of the previous term
predicted threshold. in the formula.

The paper is organized as follows: first we will present the
governing_ec_]uations and their red_uction, by means of a r€- ANALYSIS OF THE BISTABLE SOLITON SWITCHING
duced variational approach, to a simpler set of coupled ordi-
nary differential equationSODE’s), where the variables are

the amplitude and the phase of the pulses. of the nonlinear dynamics of the governing equations, by

In the case of symmetrical initial conditions this model means of a variational aporoach. In fact. based on the La-
provides excellent estimates of the energy thresholds for two ; )  app L - .
rangian formulation, it is possible to derive a dynamical

possible localized solutions. The bistable switching of thes¢ stem for the relevant bulse parameters by means of a re-
two solutions, predicted by the analysis, is then confirmed b Y P P y

means of the numerical solutions of the partial differential uced varlatlonal_ pFOb'em- As has been shown in sgveral
equationsPDE’s) which govern the full dynamics. papers[4-6,8, this is a very powerful method that gives

Supported by the numerical solutons, physical arguy ) RIS 2 AR SR PR Y ol
ments, and the analytical findings we will then search for 9

tristable operation. As an additional result, we will also gaingxzagcegcalsteméz : 22}'; iﬂ?nt)yg%?lIyalgvr\;ggggn;grﬁe d
valuable information about the general problem of steerin €SP y P

in larae arravs of coupled wavequides Ef8]. In order to verify the predictions obtained from the
9 y P 9 ' variational approach, one needs to compare the results with

the dynamics of the full systefl). We do so by numerically
GOVERNING EQUATIONS integrating the system of Eqél) by means of a split-step,
finite-difference algorithm. Transparent boundary conditions

cal, collinear, linearly coupled waveguides with a Kerr-typel27) have been imposed in order to allow radiation, which

nonlinear index of refraction, can be described by the follow- &Y. travel at a speed.different fro_m the soliton part, to flow
ing set of equation§l5]: outside the computational domain. We emphasize though

that the merits of the Lagrangian approach are that it gives
analytical insight into the behavior of the system and defines
the states as well as determines the parameter values for the
switching to occur.
97+ 30i +19@*q@ = K(qP+q® —2q?) =0, We bgegin by calculating a reduced Lagrangian density
L=[T7Ldt, by integrating over a set of trial functions of
i¥+392+|9®29g®-K(q®-29®)=0. (1) the kindf,(z,t)=A,sech@.t)explp,), n=(1,2,3)[7], thus
obtaining a set of ODE’s for the parametefg, {z) and
The indicesz andt indicate differentiation with respect to p;, {2).
the propagation distance scaled to the dispersion length  These equations are invariant with regard to phase shifts
Lo=t3/|k"| (k" is the group velocity dispersignand the and thus we may consider only the differential phases
time t, scaled byt (Tryuw=1.763,). The parameteK is  P-=P,—Ps, P+=Pp>—pP; and the system reduces to five
equal toCLp, whereC is the coupling coefficienfm ™)  coupled equations, which read
and finally the fieldsy(™ are related to the physical intensi-
ties|(M|2 by W = (27n,Lp /N o) Y24M. Equationg1) can dA;
also be considered as the Euler-Lagrange equations dz

where

In this section we start by introducing a simplified model

The optical pulse propagation in a system of three identi

ig;”+3ai + g™ PqM - K(q'®-2q™)0,

=KA;AsIN(pL)1(A1,A),

d dL d dL aL

= + - =0 2 %——KAA' I(Ay,A,)+Assi (A, A
0z @q(zf‘)* ot 3q§“)* aqm* dz A AgSin(p ;)1 (A1,Az) +Agsin(p_)1(Az,Az)],
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dA; )
—5 = KAAssIN(p-) 1 (Az,Az),

dz
dp 1
5, = 5 (A= AD+K(A—Aycogp. )l (A Ag)
(AL,Az)  IlI(ALA,)
+AAc08p.;) A, oA,
—KAzcogp_)I(Az,A3)
dl(Az,A3)
—KAzAzcoqp- )(9—A2 ,
dp- 1 .,
E—E(Az_A3)+K(Az_As)COS(P—)|(A2-A3)
A(A5,Az)  dl(AyA3)
+KA,Azcogp_) A, - oA,
—KAcop.)I(A1,A2)
al(Ag,A)
~KAAZCOS P )=, (6)
where
+ o0
I(An,Am)zf sechiA t)seciiAt)dt. (7

If we impose the symmetry conditiog®(z,t)=q®)(z,t)

and the fact that the governing system has an additional c0|’1°,-‘2:

served quantity, namely, the magdysically the energy

3

3
E=Ef lqM(t,2)|2dt=22 A,, (8)
n=1J-o n=1
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FIG. 1. Phase portrait of the orbits in the phase plane
(acosp),asin(p)) for K=1, E=40 (from the variational ap-
proach. The large dots represent a separatrix, and their intersection
a saddle point. Note the region close to the boundary, which implies
the existence of localized states.

ficients[25]. We want to stress this fact because it discloses
opportunities of novel devices, very interesting from the
viewpoint of all-optical signal processing, as we will show

below.

As said, we are interested in localized solutions of Egs.
(2), i.e., pulse propagation with large, stable amplitude and a
phase linearly varying im.

Among the symmetric solutions of the reduced dynamical
system(6) [or equivalently Eq.(9)] we find A;=A;=0,
E/2,p.=p_=A52z(i.e.,a=1,p=p,), which we de-
fine as the state “1,” and A;=A;=E/4, A,=0,
p+=p,=—A§/22 (i.e., a=0, p=p,) as state “0.” The
first is stable as soon &>E_,1=8#K; in fact for values
above this threshold there exists a region of orbits for which
the coupling dynamics does not occur, as we can observe in

eventually the problem can be reduced to a Hamiltonian syshe phase portrait of the syste(®), which is presented in
tem of two equations for the energy fraction of the centralFig- 1[21]. Here, the region between the separatrix and the

waveguidea=2A,/E and the phase differenge=p,.=p_
(see alsd21,24).

da_ dh
dZ  ap’
dp oh
where the effective Hamiltonian is
h(a,p)=B(1—8a+8a2+8a% +4a(a—1)cogp)l(a),
(10
where, from Eqgs(7) and(8), I(a) is now
+oo akE (1-a)E
I(a)=f sec 7t sec Tt dt (11

and finally 3=E/(32K), Z=KEZA4.

Note that when the symmetry is used, the model is also
equivalent to that of a coupler with unequal nonlinear coef-

circle of radius 1 describes orbits of localization. Physically
this is the regime where the nonlinearity overwhelms the
coupling and thus the energy is trapped into the central
waveguide. This can be seen directly from E(®); upon
substitution of the solution we find that the first term in the
phase equationp(, ,p_), which accounts for the nonlinear
part of Egs.(1), equals, in absolute value, the terms depend-
ing on the linear couplingK) exactly at threshold.

Similarly, for the state “0,” we find that the energy
threshold for stability isE.,o= v647K [21]. Note that this
energy is 2/2 times larger than the previous one, i.e., it
requires each pulse of the side waveguides to/Betimes
more energetic.

These two solutions can be mapped into equivalent solu-
tions of the original problem. The state “1” corresponds to a
solution of the family having to first approximation the fol-
lowing form:

2
q?(z,t)= psech nt)ex;{ i% ) , (12)
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1
qtd(z,t)= Z[e’ﬂln(lﬁL e 2 +e

2
><In(1+e2’7‘)]exp<i%z) 5
O
for which 7 is the family parameter. This is, in fact, an |_|C_| 5
approximate solution of Eqgl) under the assumption that
most of the energy is localized into the central waveguide
and only linear waves are propagating in the sidies., 0

7>1 [19,20). The state “0” is to first approximation a 5 10 15 20
solution of two uncoupled nonlinear Schlinger (NLS)
equations and a linear equation whose forcing term is the

Distance z
sum of the solutions of the other equations and thus we find @

2
qP(z,t)=q®(z,t)= psechi nt)ex;{ i %z) . (13

6
1
q?(z,t)= ;[e”tln(1+ e 2™ +e Mn(1+e®™)] lul 5
L2
| 70 —
Xex;{%z), Time

Distance z
where againy is a variable parameter. (b)

In comparing Eqs(12) and (13) with the trial functions,
we observe that these functions fail to capture the common FIG. 2. (a) Pulse energy as a function of propagation distance.
width 1/ of all three pulses in the localized states. On theThe solid (dashed line represents the pulse energy in the central
other hand, as one can see throughout the remainder of tiéveguide(the total energy in the side waveguitleZhe initial
paper, these only introduce small quantitative errors, whilgonditions are E=8mK+0.5, K=1, q™=A sech@,,t),
the overall qualitative features of the global dynamics aref1=A3;=0.99E/4, A,=0.00E/2. (b) Pulse evolution of
well captured by the variational approach. The quantitativé’zq(l):q(s) for the same solution.
error is in general small, because the failure in capturing the
correct width in the regime of localization is only on those waveguide is very high and the final state is formed only
pulses where the amplitude is almost negligible. If one deafter many relaxation oscillations, as found in the case of the
rives a variational formulation based on trial functions of theNLDC [22,23, to which both the coupling and the pulse-
form f,(z,t)=A,sechBt)exp(p,), one obtains stationary radiation interaction contributf21]. In order to verify that
solutions of the reduced variational equations correspondinthe system is really oscillating around a solitonlike solution
to Egs.(12) and(13); on the other hand, the additional pa- we performed the same numerical integration though setting
rameterB makes the general dynamical system more comK=0 for z>10, thus decoupling the waveguides: the result
plex, losing the ability to make predictions on the generalis presented in Fig. 4.
dynamics. This device shares this noteworthy bistable property with

The existence of the energy gap among stability threshthe asymmetrical NLDC's, for which the effect should be
olds of solutions(12) and (13), as indicated by the varia- attained at lower input energy. In fact, the case we presented
tional approach, is the key point of the bistability. Let us setis equivalent to an asymmetric NLDC with a ratio of 2
the initial condition in the state “0,” which has the larger among the core nonlinearities. This condition can be ob-
threshold for stability, with an energy slightly abokg,q. In  tained in fiber couplers by weakly doping one of the cores
this case the coupling dynamics is reduced to small oscillawith semiconductors; this induces a large enhancement on
tions around a stable solitonlike solution, as confirmed by thehe nonlinearity{28], due to the large difference in the ma-
numerical solution presented in Fig. 2. Note that almost nderial nonlinear susceptibilitieg29], but a weak change in
radiation is emitted in this case. However, if the energy dethe linear properties, according to the Maxwell-Garnet
creases just below threshold, the state becomes unstable ath@ory (see [30] for a review on semiconductor doped
the energy may transfer to the central fiber. Though someglasses At the limit, when no nonlinear mismatch exists,
part of it is lost in the process, since radiation is producedthe asymmetry disappears and the NLDC states have equal
nonetheless, given th&,>E.;;, one may expect that the stability threshold. Thus by means of a weak doping it
stable state “1” would form as the result of the coalescenceshould be possible to tune the energy &ap,—E.,, to the
of the incoming fields. In fact, in Fig. 3 we show this phe- minimal value for bistable switching to occur in spite of
nomenon, thus demonstrating the bistable, energy-controllecdiation losses. Numerical results indicate that the loss is
soliton switching. Note that the predicted threshold is justsmall compared to the smallest of the two thresholds and
2% different from the numerically found value, which is thus the total needed energy is not much larger than the
quite a remarkable result. The energy driven into the centrahreshold energy for switching in a symmetrical NLDC
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FIG. 3. (@) The same as in Fig.(d but with initial energy

E=8{7K+0.25. The energy is below threshold and energy trans-

fer occurs.(b) The same as for Fig.(B). Only weak radiation still

couples back, after the energy transfer has taken platcétable
localization of energy into the central waveguide=q®®. Much
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FIG. 4. The same as in Fig.(@, but settingk=0 beyond

z=10. By decoupling the waveguides we can speed up the conver-
gence towards the final solution.

3
Aeiihoto

S [ o

- 2mn;Llpa=1

t— (15

At threshold, the sum of the integrals of E45) is given by
Eqg. (8) and is equal toE;;=+87K. Thus forK=1 we

finally find
2
Et: ;

If the device is a multicore fiber we can use the following
values: k"=-20 ps/km, n,=3.25<10 2 m?/Ww,
Ao=1.55 um, and an effective core aref4~64 um?;
therefore whents=1 ps we get an estimated value of
E;=1.5 pJ. The full width at half maximum of the pulse
intensity (Tpwuwm) IS this example is given by
Tewnum=1.763¢/(E,1/2)~0.7 ps; in factE.,4/2 is the nor-
malized soliton width and 1.763 a shape coefficient for the
squared hyperbolic secant. The coupling coefficient is

C=1/Lp=0.32 m !, which is compatible with reported ex-
perimental value$12].

Y2 AeiNol K|

nzto (16)

ANALYSIS OF THE TRISTABLE SWITCHING
AND STEERING IN LARGE ARRAYS

So far we have found that bistable soliton switching is

Al£atlo § ossible for arrays of three coupled waveguides or NLDC
radiation is emitted due to the large amount of energy transferre(ﬁ/

this causes the large oscillations of the new stable state.

which, in our notation, is/24K [4,6]. Notice that this value
is very close toE.,;=87wK

ith unequal nonlinearities. However, the former device pos-

sesses a larger variety of stable localized states and tristable
operation could be a feature too.

It is obvious that this operational mode cannot be accom-

; that is, the lowest energy pjished solely by means of symmetrical solutions, a condi-

level, in spite of the asymmetry, is close to that of thegon which actually reduces the number of possible steady
NLDC. This result is confirmed in previous wofk5], where

X S ERS states. The simplest choice would be to use three states in
a comparison among the switching characteristics was dongyhich almost the whole energy is concentrated in one wave-
We might also calculate, as an example, the physical engyige. We already know the threshold of stability of solution
ergy threshold corresponding to the normalized valugyith the energy localized in the central waveguideleast in

E..1=V8wK. Its value is given by

3
Ei=Actt 2, f ™ |2d T, (14
n=1J -
whereA. is the effective area of the waveguides!™|? are
the intensities, and is the time. By recalling the relations
among dimensionless and physical variables we have

the initially symmetrical regime The other two are new
stable localized solution whose existence is easily demon-
strated. In fact, if the energy is concentrated on one side, the
opposite waveguide does not affect its linear stability, as we
note by inspection of Eq$1). Thus the array can be actually
reduced to the NLDC,; this is confirmed by the results of Ref.
[15] where this type of asymmetrical initial conditions were
used. The two solutions are of the kifit9]
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Energy

5 10 15 5 10 15 20
Distance z (@) Distance z
FIG. 5. Energy evolution for an initial condition with a broader
distribution. The data of this numerical solution aFe=+/45,

K=1,gM=A.sech@,t), A;=A;=0.06E/4, A,=09%&/2. In
agreement with the model, a localized state is formed.

,’]2
q™(z,t)~ psech nt)ex;{ i?z) ,

1 10
q(z)(z,t)~ﬂ[e”‘ln(1+e*2”t)+e* Mn(1+e?™)] Distancez 15

(b)

2
i
Xex[{ I ?Z ) FIG. 7. The same as in Fig(&, but with the following initial
conditions: E=.45, K=0.5 qM=A,sech@,t) explp,).
2 A,=A;=0.4E/4, A,=0.6E/2+0.6, p,=—ps=m/2, p,=0. The
e 152

q™(z,t)=0 i%z 17 dashed(dotted line represents the energy in the guide€13; the

energy remains confined in the central wavegugtaid line). (b)

. Corresponding propagation of the localized pulse in the central
for the (n,m) pairs(1,3) and(3,1). Thus the energy threshold Waveglﬁ’ideq:%(gl pag P

for stability of these modes is expected to be very close to
that of the NLDC; our and previousee Ref[15]) numerical
solutions have confirmed this fact. V87K —24K~0.114/K, and thus it could in principle be
In principle the tristable switching would be possible, increased to compensate radiation losses by increasing
since a small energy gap exists among the stability thresH-owever, an increase & would induce a loss of the local-
olds of these states, and might be accomplished by a synized stable solution, because the coupling is enhanced, unless
metry breaking perturbation similar to that applied for steerthe input energy grows to keep the system in the same con-
ing in large arrayg11,18—2Q. This difference amounts to ditions. Note that the governing equation can always be
scaled agg{("=Kq™, 7= Kt, and ¢&=Kz and thus the
parameter which fixes the dynamics is the ra€itE? [31].
Thus by increasing linearly we increase the margin of a
JK factor and must increase the initial energy of a squared
value to keep stability. This is not practical and also radiated
energy can be expected to increase too at the same rate.
We thus conclude that the smallness of the energy gap
among stable solutions hampers the steering. Another possi-
bility would be to increase only the initial stored energy, but
this would render a much more stable localized state. None-
; theless, if a broader distribution among the waveguides of
0 the increased energy is allowed, steering can be reached by
5 10 15 means of a phase symmetry breaking initial condition, as we
explain below.
Distance z Let us consider again the symmetric case, represented in
the phase portrait of Fig. 1. As the total energy increases, we
FIG. 6. The same as Fig. 5 but with a slightly different distri- find that the region of localized solutions expands and thus
bution of the same energy, i.éd;=A;=0.1E/4, A,=0.9E/2. The  there exist stable states for whiehis less than 1(though
initial condition is not stable and localization is lost; the onset of astill closg; this means that a part of the energy is shared with
coupling dynamics is observed, as predicted by the model. the other waveguides. Initial states of this kind seem good
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FIG. 8. (a) The same as in the preceding figure except that FIG. 9. The same as in the previous two figures, except that
A,=0.6E/2+0.25. The pulse from the waveguided2{ q'?) steers  A,=0.6E/2+0.5. There exists a small set of initial conditions for
to 3 w=0q), as is clearly observable ifb) and(c). Note in (a) A, close to this value for which the steering takes place toward the

that only a small amount of energy crosses to the waveguide 1. guide 1 =q¥), as can be seen ifb) and(c).

candidates to realize switching, since more energy can bieading to the splitting of the energy on the sides. This is
stored, to compensate radiation losses, but the system is stgbnfirmed by the result of the numerical integrations pre-
close to the separatrix. sented in Figs. 5 and 6. This case closely resembles the be-
We start with a localized solution where most but not allhavior of the NLDC, where a similar transition to the cou-
of the energy is concentrated in the central waveguide. Thgjing dynamical regime has been widely reporféct,24.
total energy is chosen to b@45, i.e., larger than the thresh-  In this symmetric case, no final steady state is reached
old of stability (y87K,K=1). By means of Eqg9) we can  since, as said, we need a symmetry breaking perturbation to
calculate exactly the position of the saddle point of Fig. 1get tristable operational mode. Guided by previous results
which is ag~0.6995,p;= 7. Upon substitution of the value [11,18-20,32 we try to apply a linear phase shift among
of the saddle into Eq.10) we can calculaté(ag,ps) which  adjacent waveguides in order to achieve the energy transfer
will be conserved along the homoclinic orbit. In particular, in a direction prefixed by the slope of the shift. The energy
we can find the value od on the separatrix go=0; thisis now is expected to move mostly to one side and there get
the value at whicha is closer to unity, i.e., the most localized trapped when it is above the required threshold. This is
state. In our example we foural,,,,~0.96; hence, if more shown in Fig. 7, where an asymmetric stable state is pre-
than 96% of the energy is concentrated into the central guidesented, and Fig. 8, where the energy steering to a new stable
localization persists. Below threshold and according to thecondition is found by simply decreasing the input energy in
model, the onset of the coupling dynamics should be foundthe central waveguid&,. Note that in this case we had to
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FIG. 10. (a) Evolution of the energy for a slight perturbation of an antisymmetric solutiere87K+4, K=1,
qM=A,sech@,t)explp,), A;=A;=0.99F/4, A,=0.001E/2, p;=p,=0, ps=, of Egs. (1) (dotted,u=q™?; solid; g=q?; dashed,
v=0q®). Note (b) that initially the side pulsesu(v) are phase locked ta; this antisymmetry is broken when the large energy transfer
occurs among the waveguides. Input and output pulses in all the waveguides present a smooth behavior and the emission of radiation mainly
takes place at the point of transf@), (d), (e).

allow an even broader distribution with respect to what isoptical switching. Note in fact that the tristable switching is
predicted by our previous analysis. This is expected if wesolely controlled by changing the energy in the central wave-
think that the modek9) is based on the symmetric input guide. If this is large, localization is the only outcome; for
hypothesis, which is not the case of Figs. 7 and 8. By usingntermediate energy levels we found steering on both sides,
the general set of equatios) we found that a broader en- and for low energies coupling prevails.

ergy distribution is needed to break stability and this indica- Even more remarkable is the fact that this interpretation
tion has been used to get the result of Figs. 7 and 8. Notef steering and trapping by means of stability energy levels
also thatk had to be lowered; for largek we observed may be extended to larger arrays, thus explaining why the
quicker but not stable energy transfers. In the small layer oteering of localized states, besides a symmetry breaking ini-
energies among the two values shown in Figs. 7 and 8 wéal condition, needs also large energies with broad distribu-
happened to find the numerical evidence of the existence oftions, as found numerically in previous worKkl,18—20Q. In
small, though clearly defined, set of initial conditions which fact, to steer a localized state to another position of an array
leads to the steering of the stable state towards the oppositequires an initial energy well above the threshold of stability
waveguide. An example is shown in Fig. 9. This fact is veryof the final, desired state, since a lot of it is lost in radiation
promising in view of an application of these devices in all-during the steering process. Moreover, this additional energy
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10 the preceding section, the creation of a tunable energy gap
can be obtained in the nonlinearly asymmetrical coupler; a
natural extension would be to realize a structure in which a

- stair of energy levels _ is rez_ilized, i.e.Ecro>Ecnn

=) ‘ >E.»>- -, by means of increasing step by step the non-

CIC) 5} linearity of the cores. Such a device might be able to attain

1T} multistable, cw or pulsed, switching by simply controlling

i the input energy. Thus the design and realization of novel

VA A A A A A devices, such as planar waveguides made of layers of semi-
RVRVRVIVAVIAVIRVIAY conductor with different stoichiometry or coupled glass fiber
0 5 10 15 20 arrays doped with different volume fractions of semiconduc-
tors, might disclose interesting experimental and technical
@ Distance z applications in the all-optical signal processing.

ANALYSIS OF THE ANTISYMMETRIC
EXACT SOLUTION

The study of unstable, exact solutions of the NLEZZ]
has revealed interesting dynamics and possibly more reliable
applications of that device. For this reason we finally address
the behavior of an exact solution of the PDEls, i.e.,

qP(z,t)=—q®(z,t)=AsectiAt)exp(ip),

5
Distance z

q@(z,t)=0. (18)

This analytical solution is antisymmetric and resembles the
localized state, previously discussed, where the energy is
concentrated in the sides. In fact, if we consider the solution
of Egs. (6) which corresponds to Eq(18), we have
A=A;=A=E/4, A,=0, p.(2)=—A%z/2, and p_(2)
=p.(z)— 7 which, apart form the phase differenee (in-
stead of pamongp, andp_, looks like the symmetric one.
However, its properties are quite different as the simplified
0 - model of Egs(6) indicates itself. By studying more carefully
Distance z : the system(6) under this initial condition, we can reveal an
(© important difference in the equations for the phases. In fact
the term proportional t& is zero in the antisymmetric case,
FIG. 11. (8 The same as in the preceding figure but with but not for the symmetric solution. In the latter case, as the
p3=0. The final localized state is reached much quicker than in thénput energy decreases, the first term and that depending on
case of the antisymmetric initial condition. The input energy is lessk hecome comparable, as previously noted, and the localized
than that of Fig. 2 and 3 and thus less energy is emitted when thgtate becomes unstable, while for the antisymmetric solution,
pulge forms and a smoother behavior is observed in the pulse propgye term proportional t& remains zero and thus, and
gation (b), (c). p_ stay out of phase during propagation since
dp,/dz=dp_/dz for all z. The energy content in the side
cannot be initially stored in the same waveguide, since iwaveguides changes with propagation sincesttgifference
would strengthen the stability of the initial state. In order tophase implies thatlA; /dz# dA;/dz but the transfer to the
keep the system close to the edge of stability, thus allowingentral waveguide is very slow because the phase difference
a weak perturbation to realize the switching, a broader disis locked to7r and this causedA,/dz to remain very small.
tribution must be used. In effect, captured by the variational approach, is a feature
As a matter of fact, what ultimately prevents the potentialof the governing equation too, if an antisymmetric perturba-
multistable operation of waveguide arrays is the fact thation is applied to this kind of solution. This can be noticed in
states for which the energy is localized in a single wave¥ig. 10, where we show the results of numerical integration
guide, in an array of identical waveguides, have approxi-of Eq. (1) with an initial condition of the typ€18). Note that
mately the same energy threshold of stability. Unless thighe pulses are initially phase locked 49 as predicted, and
symmetry is broken, steering would require large distribu-that at the output we get, once more, a localized stable solu-
tions of energy among waveguides, as experiment seems tmn, since the energy of the new pulse is larger than the
demonstrate[13]. Hence a really multistable switching threshold level. However, the dynamics that leads to the
among well localized solutions seems to be excludqati-  transfer is now much slower than in the case of the symmet-
ori. However, we want to conclude this section with a pos-ric solution, as can be observed by comparing Fig. 10 with
sible suggestion to overcome this problem. As we noted irFig. 11. Hence with the same initial energy of Fig. 10 we
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might obtain, with symmetric initial conditions, a quicker staying still close to the edge of stability. Thus a symmetry
transfer and localization of energy in the central waveguidebreaking perturbation can induce the steering of the pulse
This effect might be exploited for switching if a short, say 3towards one side. This prediction has been confirmed nu-
or 4 length units, device is used. Besides the shorter lengtmerically and we found that steering in both directions can
the advantage of this device, with respect to the long devicee accomplished by simply varying the input energy in the
of Figs. 2 and 3, is that less initial energy is needed. Thixentral waveguide.

decrease in the input energy also contributes to a quicker and This result has been applied to explain why the steering of
smoother formation of the output pulse, as noted by companecalized states has proved to be a difficult task in large

ing Figs. 10 and 11 with Figs. 2 and 3. coupled arrays. In fact, the steering is submitted to the fol-
lowing requirements: the total initial energy must be well
CONCLUSIONS above the threshold of stability of the final, desired state, as

. ) i ) . a compensation of radiation losses during the steering; a

We studied the bistable and tristable soliton switching inproader distribution is needed to store this additional energy
collinear arrays of three, linearly coupled, nonlinearypjie keeping the system close to the homoclinic orbit which
waveguides. By means of a variational method we found thaéeparates different regimes; finally a symmetry breaking per-
different energy thresholds of stability are associated to tWqyrhation, such as a differential phase, must be applied to
localized solutions of the device. The gap among these enick” the energy in a prefixed direction of the array. Novel
ergy levels is large enough to compensate radiation loss andyitistable devices, based on designed asymmetries in the
thus allows the bistable operation of the device. Numericahonlinear coefficient of the cores, have also been suggested
solutions of the governing equations confirm the analyticay the basis of the analysis.
predictions. i . Eventually we have studied a particular solution of the

These results can be extended to an asymmetrical non“'@;’overning equation, which presents a peculiar slow dynam-
ear directional coupler, with unequal nonlinear coefficient.ics, which is captured by the variational model. Application
The analysis predicts that, through the enhancement of thg, switching in short length arrays is predicted.
nonlinear coefficient in one of the waveguides, the energy The physical and technical results presented in this paper
gap would be minimal and bistable operation would be at—4e thought to be an improvement of the knowledge of the
tained at the lowest energy level. The physical energy valugynamics of arrays of coupled waveguides. Henceforth, they

is also expected to be low because of the concomitant inare highly relevant in the design of reliable devices for all-
crease of the nonlinearity and of the device length. Semicongpical signal processing.

ductor planar waveguides and semiconductor doped glass
waveguides have been identified as a possible candidate for
an experimental realization.
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