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Bistable and tristable soliton switching in collinear arrays of linearly coupled waveguides

Alejandro B. Aceves* and Marco Santagiustina†

Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
~Received 19 February 1997!

The soliton switching in an array of three, linearly coupled waveguides is investigated. Supported by a
variational model, we show that a novel nonlinear switching among stable localized states is possible in long
couplers. The numerical integrations of the governing equations confirm this interesting phenomenon. These
results can be extended to asymmetrical nonlinear directional couplers, where the asymmetry is in the nonlin-
ear coefficients. The tristable operational mode is investigated too and the model furnishes valuable indications
in order to realize it. The model also allows a physical insight into the more general problem of steering in
arrays with a large number of waveguides. Finally, an exact, antisymmetric solution of the governing equations
of the three-waveguide array is also investigated, because it shows dynamical properties that might be useful
in all-optical switching.@S1063-651X~97!08007-0#

PACS number~s!: 42.65.Tg, 42.65.Wi
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INTRODUCTION

Soliton switching in nonlinear directional couple
~NLDC’s! @1# is regarded as a possible mechanism for
optical signal processing@2# and hence it has been the obje
of experimental@2# as well as analytical and numerical in
vestigations@3–8#.

The switching of cw signal in arrays of more than tw
waveguides@9–11#, such as multicore fibers@12# or coupled
semiconductor waveguides@13#, is also under current inves
tigation. This interest stems from the fact that shar
switching characteristics are expected in these devices@10#.
Unfortunately, the growth of the energy threshold for t
switching, as the numberN of waveguides increases, and th
lack of analytical tools to predict the dynamics have ha
pered their effective exploitation so far. Eventually, esp
cially in long couplers, chaotic dynamics has been repor
to arise as soon asN>3 @14,15#.

Hence the nonlinear switching of cw signals as well as
solitonlike pulses has been numerically investigated for l
ited sets of initial conditions in the case of collinear half-be
length three-waveguide arrays@14,15#. Those results show
the predicted sharper switching characteristic, when a p
is launched in one of the side waveguides and no pulses
present in the remaining waveguides.

Though this is the simplest configuration, one might e
pect a richer dynamics to appear if other initial conditio
are used and this paper is aimed to be a step in the direc
of better understanding the behavior of these systems
their potential use in all-optical signal processing.

Besides the coupling dynamical regimes, waveguide
rays possess a large family of steady-state solutions@16,17#.
Particularly interesting are the so called localized states,
those solutions for which most of the energy is concentra
in a single waveguide of the array@18–20#. Many of these
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solutions have a stable branch and, as we show elsewhe
detail @21#, their appearance can be explained as a cros
of a separatrix in the phase space of a dynamical system
the pulse parameters derived from a reduced Lagrangian
proximation. In fact, if the energy is increased, orbits mo
away from the region of coupling towards another region
almost constant pulse amplitude and rotating phase, i.e.
calized states.

This transition is similar to that which occurs in th
NLDC at the switching threshold@1,4,6#, though an impor-
tant distinction must be noted. In fact, for the NLDC the
exist two symmetric localized states~the energy being con
centrated in one of the waveguides! each characterized b
the same energy threshold because of the intrinsic symm
of the device. However, if the number of waveguides
greater than 2, several new localized states appear,
characterized by an energy threshold which, in princip
may be different from that of other solutions. The potent
of multistable operation of these devices is thus clear
some perturbation is found that, when applied, the sys
moves from an initial high energy mode to a final stable st
at lower energy. The net loss in such a scenario would
count for radiation, which has been already indicated a
major feature in the context of the transition from unstable
stable solutions in the NLDC@22# and of the relaxation os
cillations while reaching final state both in NLDC’s@22,23#
and three-waveguide arrays@21,24#.

In this paper we will concentrate on the case of a thr
waveguide collinear array. First, we will show that by e
ploiting the energy gap among two different stable localiz
solutions, it is possible to obtain a bistable switching fro
this device. Note that this behavior is very different, from t
physical viewpoint, from that of the NLDC, where the stab
state can be broken only to initiate the typical linearlike co
pling dynamics. This stems from the fact that in the NLD
there is no energy gap, as said, among the states. This
dition is necessary, as we will show, in order to compens
the loss due to radiation, during the state commutation.

Eventually, if symmetrical initial conditions are applied,
is worth noting that the three-waveguide device is equival
to an asymmetrical NLDC@25# and bistability would occur

cs,
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1114 56ALEJANDRO B. ACEVES AND MARCO SANTAGIUSTINA
too. In particular, our case would correspond to a NLD
where the cores have equal linear properties and a mism
in the nonlinearity. Recently the chance of bistability in co
plers which present asymmetries in the linear properties
the cores has been suggested too@26#. Moreover, we will
explore possible tristable soliton switching, which is pla
sible in such a device. Analytical considerations will provi
us useful indications in order to achieve this goal. Our
proach will also give enough evidence to explain the rea
why the steering of localized solutions has proved to be h
to achieve in arrays with a large number of waveguides
less strong actions are taken@11,18–20#.

We will also study the dynamical evolution of an exa
antisymmetric stationary solution of the governing equati
In fact, the results of the analytical approach give stro
indications that a slow~in the propagation distance! dynam-
ics is associated to this input condition. The numerical so
tions final stable state is observed if energy is above
predicted threshold.

The paper is organized as follows: first we will present
governing equations and their reduction, by means of a
duced variational approach, to a simpler set of coupled o
nary differential equations~ODE’s!, where the variables ar
the amplitude and the phase of the pulses.

In the case of symmetrical initial conditions this mod
provides excellent estimates of the energy thresholds for
possible localized solutions. The bistable switching of th
two solutions, predicted by the analysis, is then confirmed
means of the numerical solutions of the partial differen
equations~PDE’s! which govern the full dynamics.

Supported by the numerical solutions, physical arg
ments, and the analytical findings we will then search
tristable operation. As an additional result, we will also ga
valuable information about the general problem of steer
in large arrays of coupled waveguides.

GOVERNING EQUATIONS

The optical pulse propagation in a system of three ide
cal, collinear, linearly coupled waveguides with a Kerr-ty
nonlinear index of refraction, can be described by the follo
ing set of equations@15#:

iqz
~1!1 1

2qtt
~1!1uq~1!u2q~1!2K~q~2!22q~1!!0,

iqz
~2!1 1

2qtt
~2!1uq~2!u2q~2!2K~q~1!1q~3!22q~2!!50,

iqz
~3!1 1

2qtt
~3!1uq~3!u2q~3!2K~q~2!22q~3!!50. ~1!

The indicesz and t indicate differentiation with respect t
the propagation distancez, scaled to the dispersion lengt
LD5t0

2/uk9u (k9 is the group velocity dispersion!, and the
time t, scaled byt0 (TFWHM51.763t0). The parameterK is
equal toCLD , whereC is the coupling coefficient~m21)
and finally the fieldsq(n) are related to the physical intens
ties uc (n)u2 by q(n)5(2pn2LD /l0)

1/2c (n). Equations~1! can
also be considered as the Euler-Lagrange equations

]

]z

]L

]qz
~n!*

1
]

]t

]L

]qt
~n!*

2
]L

]q~n!*
50 ~2!
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of the Lagrangian density

L5 (
n51

3

Ln1L int, ~3!

where

Ln5
i

2
~q~n!* qz

~n!2q~n!qz
~n!* !2

1

2
uqt

~n!u21
1

2
uq~n!u4 ~4!

and

L int52KS q~1!* q~2!1c.c.1q~3!* q~2!1c.c.2 (
n51

3

uq~n!u2D ,
~5!

where c.c. means the complex conjugate of the previous t
in the formula.

ANALYSIS OF THE BISTABLE SOLITON SWITCHING

In this section we start by introducing a simplified mod
of the nonlinear dynamics of the governing equations,
means of a variational approach. In fact, based on the
grangian formulation, it is possible to derive a dynamic
system for the relevant pulse parameters by means of a
duced variational problem. As has been shown in sev
papers@4–6,8#, this is a very powerful method that give
useful information on the behavior of the system, ev
though it is a severe reduction from an infinite dimensio
dynamical system to a finite and typically low dimension
one, especially when a small number of parameters are u
@8#. In order to verify the predictions obtained from th
variational approach, one needs to compare the results
the dynamics of the full system~1!. We do so by numerically
integrating the system of Eqs.~1! by means of a split-step
finite-difference algorithm. Transparent boundary conditio
@27# have been imposed in order to allow radiation, whi
may travel at a speed different from the soliton part, to flo
outside the computational domain. We emphasize tho
that the merits of the Lagrangian approach are that it gi
analytical insight into the behavior of the system and defi
the states as well as determines the parameter values fo
switching to occur.

We begin by calculating a reduced Lagrangian dens
L5*2`

1`L dt, by integrating over a set of trial functions o
the kind f n(z,t)5Ansech(Ant)exp(ipn), n5(1,2,3) @7#, thus
obtaining a set of ODE’s for the parametersA1,2,3(z) and
p1,2,3(z).

These equations are invariant with regard to phase sh
and thus we may consider only the differential phas
p25p22p3 , p15p22p1 and the system reduces to fiv
coupled equations, which read

dA1
dz

5KA1A2sin~p1!I ~A1 ,A2!,

dA2
dz

52KA2@A1sin~p1!I ~A1 ,A2!1A3sin~p2!I ~A2 ,A3!#,
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56 1115BISTABLE AND TRISTABLE SOLITON SWITCHING IN . . .
dA3
dz

5KA2A3sin~p2!I ~A2 ,A3!,

dp1

dz
5
1

2
~A2

22A1
2!1K~A22A1!cos~p1!I ~A1 ,A2!

1A1A2cos~p1!F]I ~A1 ,A2!

]A1
2

]I ~A1,A2!

]A2
G

2KA3cos~p2!I ~A2,A3!

2KA2A3cos~p2!
]I ~A2 ,A3!

]A2
,

dp2

dz
5
1

2
~A2

22A3
2!1K~A22A3!cos~p2!I ~A2 ,A3!

1KA2A3cos~p2!F]I ~A2 ,A3!

]A3
2

]I ~A2,A3!

]A2
G

2KA1cos~p1!I ~A1,A2!

2KA1A2cos~p1!
]I ~A1 ,A2!

]A2
, ~6!

where

I ~An ,Am!5E
2`

1`

sech~Ant !sech~Amt !dt. ~7!

If we impose the symmetry conditionq(1)(z,t)5q(3)(z,t)
and the fact that the governing system has an additional
served quantity, namely, the mass~physically the energy!

E5 (
n51

3 E
2`

`

uq~n!~ t,z!u2dt52(
n51

3

An , ~8!

eventually the problem can be reduced to a Hamiltonian s
tem of two equations for the energy fraction of the cent
waveguidea52A2 /E and the phase differencep5p15p2

~see also@21,24#!.

da

dZ
5

]h

]p
,

dp

dZ
52

]h

]a
, ~9!

where the effective Hamiltonian is

h~a,p!5b~128a18a218a3!14a~a21!cos~p!I ~a!,
~10!

where, from Eqs.~7! and ~8!, I (a) is now

I ~a!5E
2`

1`

sechFaE2 tGsechF ~12a!E

4
tGdt ~11!

and finallyb5E/(32K), Z5KEz/4.
Note that when the symmetry is used, the model is a

equivalent to that of a coupler with unequal nonlinear co
n-

s-
l

o
-

ficients@25#. We want to stress this fact because it disclos
opportunities of novel devices, very interesting from t
viewpoint of all-optical signal processing, as we will sho
below.

As said, we are interested in localized solutions of E
~1!, i.e., pulse propagation with large, stable amplitude an
phase linearly varying inz.

Among the symmetric solutions of the reduced dynami
system ~6! @or equivalently Eq.~9!# we find A15A350,
A25E/2, p15p25A2

2/2z ~i.e.,a51, p5p1), which we de-
fine as the state ‘‘1,’’ and A15A35E/4, A250,
p15p252A1

2/2z ~i.e., a50, p5p1) as state ‘‘0.’’ The
first is stable as soon asE.Ecr15A8pK; in fact for values
above this threshold there exists a region of orbits for wh
the coupling dynamics does not occur, as we can observ
the phase portrait of the system~9!, which is presented in
Fig. 1 @21#. Here, the region between the separatrix and
circle of radius 1 describes orbits of localization. Physica
this is the regime where the nonlinearity overwhelms
coupling and thus the energy is trapped into the cen
waveguide. This can be seen directly from Eqs.~6!; upon
substitution of the solution we find that the first term in t
phase equations (p1 ,p2), which accounts for the nonlinea
part of Eqs.~1!, equals, in absolute value, the terms depe
ing on the linear coupling (K) exactly at threshold.

Similarly, for the state ‘‘0,’’ we find that the energ
threshold for stability isEcr05A64pK @21#. Note that this
energy is 2A2 times larger than the previous one, i.e.,
requires each pulse of the side waveguides to beA2 times
more energetic.

These two solutions can be mapped into equivalent s
tions of the original problem. The state ‘‘1’’ corresponds to
solution of the family having to first approximation the fo
lowing form:

q~2!~z,t !5hsech~ht !expS ih2

2
zD , ~12!

FIG. 1. Phase portrait of the orbits in the phase pla
„acos(p),asin(p)… for K51, E5A40 ~from the variational ap-
proach!. The large dots represent a separatrix, and their intersec
a saddle point. Note the region close to the boundary, which imp
the existence of localized states.
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1116 56ALEJANDRO B. ACEVES AND MARCO SANTAGIUSTINA
q~1,3!~z,t !5
1

2h
@ehtln~11e22ht!1e2ht

3 ln~11e2ht!#expS ih2

2
zD

for which h is the family parameter. This is, in fact, a
approximate solution of Eqs.~1! under the assumption tha
most of the energy is localized into the central wavegu
and only linear waves are propagating in the sides~i.e.,
h.1 @19,20#!. The state ‘‘0’’ is to first approximation a
solution of two uncoupled nonlinear Schro¨dinger ~NLS!
equations and a linear equation whose forcing term is
sum of the solutions of the other equations and thus we

q~1!~z,t !5q~3!~z,t !5hsech~ht !expS i h2

2
zD , ~13!

q~2!~z,t !5
1

h
@ehtln~11e22ht!1e2htln~11e2ht!#

3expS ih2

2
zD ,

where againh is a variable parameter.
In comparing Eqs.~12! and ~13! with the trial functions,

we observe that these functions fail to capture the comm
width 1/h of all three pulses in the localized states. On t
other hand, as one can see throughout the remainder o
paper, these only introduce small quantitative errors, w
the overall qualitative features of the global dynamics
well captured by the variational approach. The quantitat
error is in general small, because the failure in capturing
correct width in the regime of localization is only on tho
pulses where the amplitude is almost negligible. If one
rives a variational formulation based on trial functions of t
form f n(z,t)5Ansech(Bt)exp(ipn), one obtains stationary
solutions of the reduced variational equations correspond
to Eqs.~12! and ~13!; on the other hand, the additional p
rameterB makes the general dynamical system more co
plex, losing the ability to make predictions on the gene
dynamics.

The existence of the energy gap among stability thre
olds of solutions~12! and ~13!, as indicated by the varia
tional approach, is the key point of the bistability. Let us
the initial condition in the state ‘‘0,’’ which has the large
threshold for stability, with an energy slightly aboveEcr0. In
this case the coupling dynamics is reduced to small osc
tions around a stable solitonlike solution, as confirmed by
numerical solution presented in Fig. 2. Note that almost
radiation is emitted in this case. However, if the energy
creases just below threshold, the state becomes unstabl
the energy may transfer to the central fiber. Though so
part of it is lost in the process, since radiation is produc
nonetheless, given thatEcr0.Ecr1, one may expect that th
stable state ‘‘1’’ would form as the result of the coalescen
of the incoming fields. In fact, in Fig. 3 we show this ph
nomenon, thus demonstrating the bistable, energy-contro
soliton switching. Note that the predicted threshold is j
2% different from the numerically found value, which
quite a remarkable result. The energy driven into the cen
e

e
d

n
e
the
e
e
e
e

-

g

-
l

-

t

-
e
o
-
and
e
,

e

ed
t

al

waveguide is very high and the final state is formed o
after many relaxation oscillations, as found in the case of
NLDC @22,23#, to which both the coupling and the pulse
radiation interaction contribute@21#. In order to verify that
the system is really oscillating around a solitonlike soluti
we performed the same numerical integration though set
K50 for z.10, thus decoupling the waveguides: the res
is presented in Fig. 4.

This device shares this noteworthy bistable property w
the asymmetrical NLDC’s, for which the effect should b
attained at lower input energy. In fact, the case we prese
is equivalent to an asymmetric NLDC with a ratio of
among the core nonlinearities. This condition can be
tained in fiber couplers by weakly doping one of the co
with semiconductors; this induces a large enhancemen
the nonlinearity@28#, due to the large difference in the ma
terial nonlinear susceptibilities@29#, but a weak change in
the linear properties, according to the Maxwell-Garn
theory ~see @30# for a review on semiconductor dope
glasses!. At the limit, when no nonlinear mismatch exist
the asymmetry disappears and the NLDC states have e
stability threshold. Thus by means of a weak doping
should be possible to tune the energy gapEcr02Ecr1 to the
minimal value for bistable switching to occur in spite
radiation losses. Numerical results indicate that the los
small compared to the smallest of the two thresholds
thus the total needed energy is not much larger than
threshold energy for switching in a symmetrical NLD

FIG. 2. ~a! Pulse energy as a function of propagation distan
The solid ~dashed! line represents the pulse energy in the cent
waveguide~the total energy in the side waveguides!. The initial
conditions are E58ApK10.5, K51, q(n)5Ansech(An ,t),
A15A350.999E/4, A250.001E/2. ~b! Pulse evolution of
u5q(1)5q(3) for the same solution.
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56 1117BISTABLE AND TRISTABLE SOLITON SWITCHING IN . . .
which, in our notation, isA24K @4,6#. Notice that this value
is very close toEcr15A8pK; that is, the lowest energy
level, in spite of the asymmetry, is close to that of t
NLDC. This result is confirmed in previous work@15#, where
a comparison among the switching characteristics was d

We might also calculate, as an example, the physical
ergy threshold corresponding to the normalized va
Ecr15A8pK. Its value is given by

Et5Aeff(
n51

3 E
2`

`

uc~n!u2dt, ~14!

whereAeff is the effective area of the waveguides,uc (n)u2 are
the intensities, andt is the time. By recalling the relation
among dimensionless and physical variables we have

FIG. 3. ~a! The same as in Fig. 2~a! but with initial energy
E58ApK10.25. The energy is below threshold and energy tra
fer occurs.~b! The same as for Fig. 2~b!. Only weak radiation still
couples back, after the energy transfer has taken place.~c! Stable
localization of energy into the central waveguideq5q(2). Much
radiation is emitted due to the large amount of energy transfer
this causes the large oscillations of the new stable state.
e.
n-
e

Et5
Aeffl0t0
2pn2LD

(
n51

3 E
2`

`

uq~n!u2dt. ~15!

At threshold, the sum of the integrals of Eq.~15! is given by
Eq. ~8! and is equal toEcr15A8pK. Thus for K51 we
finally find

Et5S 2p D 1/2Aeffl0uk9u
n2t0

. ~16!

If the device is a multicore fiber we can use the followin
values: k95220 ps2/km, n253.25310220 m2/W,
l051.55 mm, and an effective core areaAeff;64 mm2;
therefore whent051 ps we get an estimated value
Et51.5 pJ. The full width at half maximum of the puls
intensity (TFWHM) is this example is given by
TFWHM51.763t0 /(Ecr1/2);0.7 ps; in factEcr1/2 is the nor-
malized soliton width and 1.763 a shape coefficient for
squared hyperbolic secant. The coupling coefficient
C51/LD50.32 m21, which is compatible with reported ex
perimental values@12#.

ANALYSIS OF THE TRISTABLE SWITCHING
AND STEERING IN LARGE ARRAYS

So far we have found that bistable soliton switching
possible for arrays of three coupled waveguides or NLD
with unequal nonlinearities. However, the former device p
sesses a larger variety of stable localized states and tris
operation could be a feature too.

It is obvious that this operational mode cannot be acco
plished solely by means of symmetrical solutions, a con
tion which actually reduces the number of possible ste
states. The simplest choice would be to use three state
which almost the whole energy is concentrated in one wa
guide. We already know the threshold of stability of soluti
with the energy localized in the central waveguide~at least in
the initially symmetrical regime!. The other two are new
stable localized solution whose existence is easily dem
strated. In fact, if the energy is concentrated on one side,
opposite waveguide does not affect its linear stability, as
note by inspection of Eqs.~1!. Thus the array can be actuall
reduced to the NLDC; this is confirmed by the results of R
@15# where this type of asymmetrical initial conditions we
used. The two solutions are of the kind@19#

-

d;

FIG. 4. The same as in Fig. 3~c!, but settingK50 beyond
z510. By decoupling the waveguides we can speed up the con
gence towards the final solution.
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1118 56ALEJANDRO B. ACEVES AND MARCO SANTAGIUSTINA
q~n!~z,t !'hsech~ht !expS ih2

2
zD ,

q~2!~z,t !'
1

2h
@ehtln~11e22ht!1e2htln~11e2ht!#

3expS i h2

2
zD ,

q~m!~z,t !5OS 1h3D f ~ht !expS i h2

2
zD ~17!

for the (n,m) pairs~1,3! and~3,1!. Thus the energy threshol
for stability of these modes is expected to be very close
that of the NLDC; our and previous~see Ref.@15#! numerical
solutions have confirmed this fact.

In principle the tristable switching would be possibl
since a small energy gap exists among the stability thre
olds of these states, and might be accomplished by a s
metry breaking perturbation similar to that applied for ste
ing in large arrays@11,18–20#. This difference amounts to

FIG. 5. Energy evolution for an initial condition with a broad
distribution. The data of this numerical solution areE5A45,
K51,q(n)5Ansech(Ant), A15A350.06E/4, A250.94E/2. In
agreement with the model, a localized state is formed.

FIG. 6. The same as Fig. 5 but with a slightly different dist
bution of the same energy, i.e.,A15A350.1E/4, A250.9E/2. The
initial condition is not stable and localization is lost; the onset o
coupling dynamics is observed, as predicted by the model.
o

h-
m-
-

A8pK2A24K;0.114AK, and thus it could in principle be
increased to compensate radiation losses by increasingK.
However, an increase ofK would induce a loss of the local
ized stable solution, because the coupling is enhanced, un
the input energy grows to keep the system in the same c
ditions. Note that the governing equation can always
scaled asqK

(n)5AKq(n), t5AKt, and j5Kz and thus the
parameter which fixes the dynamics is the ratioK/E2 @31#.
Thus by increasingK linearly we increase the margin of
AK factor and must increase the initial energy of a squa
value to keep stability. This is not practical and also radia
energy can be expected to increase too at the same rate

We thus conclude that the smallness of the energy
among stable solutions hampers the steering. Another po
bility would be to increase only the initial stored energy, b
this would render a much more stable localized state. No
theless, if a broader distribution among the waveguides
the increased energy is allowed, steering can be reache
means of a phase symmetry breaking initial condition, as
explain below.

Let us consider again the symmetric case, represente
the phase portrait of Fig. 1. As the total energy increases,
find that the region of localized solutions expands and t
there exist stable states for whicha is less than 1~though
still close!; this means that a part of the energy is shared w
the other waveguides. Initial states of this kind seem go

FIG. 7. The same as in Fig. 2~a!, but with the following initial
conditions: E5A45, K50.5, q(n)5Ansech(Ant) exp(ipn),
A15A350.4E/4, A250.6E/210.6, p152p35p/2, p250. The
dashed~dotted! line represents the energy in the guide 3~1!; the
energy remains confined in the central waveguide~solid line!. ~b!
Corresponding propagation of the localized pulse in the cen
waveguideq5q(2).
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candidates to realize switching, since more energy can
stored, to compensate radiation losses, but the system is
close to the separatrix.

We start with a localized solution where most but not
of the energy is concentrated in the central waveguide.
total energy is chosen to beA45, i.e., larger than the thresh
old of stability (A8pK,K51). By means of Eqs.~9! we can
calculate exactly the position of the saddle point of Fig
which is as;0.6995,ps5p. Upon substitution of the value
of the saddle into Eq.~10! we can calculateh(as ,ps) which
will be conserved along the homoclinic orbit. In particula
we can find the value ofa on the separatrix atp50; this is
the value at whicha is closer to unity, i.e., the most localize
state. In our example we foundamax;0.96; hence, if more
than 96% of the energy is concentrated into the central gu
localization persists. Below threshold and according to
model, the onset of the coupling dynamics should be fou

FIG. 8. ~a! The same as in the preceding figure except t
A250.6E/210.25. The pulse from the waveguide 2(q5q(2)) steers
to 3 (v5q(3)), as is clearly observable in~b! and ~c!. Note in ~a!
that only a small amount of energy crosses to the waveguide 1
be
till

l
e

e,
e
d,

leading to the splitting of the energy on the sides. This
confirmed by the result of the numerical integrations p
sented in Figs. 5 and 6. This case closely resembles the
havior of the NLDC, where a similar transition to the co
pling dynamical regime has been widely reported@1,4,22#.

In this symmetric case, no final steady state is reac
since, as said, we need a symmetry breaking perturbatio
get tristable operational mode. Guided by previous res
@11,18–20,32# we try to apply a linear phase shift amon
adjacent waveguides in order to achieve the energy tran
in a direction prefixed by the slope of the shift. The ener
now is expected to move mostly to one side and there
trapped when it is above the required threshold. This
shown in Fig. 7, where an asymmetric stable state is p
sented, and Fig. 8, where the energy steering to a new st
condition is found by simply decreasing the input energy
the central waveguideEq . Note that in this case we had t

t FIG. 9. The same as in the previous two figures, except
A250.6E/210.5. There exists a small set of initial conditions f
A2 close to this value for which the steering takes place toward
guide 1 (u5q(1)), as can be seen in~b! and ~c!.



fer
tion mainly

1120 56ALEJANDRO B. ACEVES AND MARCO SANTAGIUSTINA
FIG. 10. ~a! Evolution of the energy for a slight perturbation of an antisymmetric solution:E5A8pK14, K51,
q(n)5Ansech(Ant)exp(ipn), A15A350.999E/4, A250.001E/2, p15p250, p35p, of Eqs. ~1! ~dotted,u5q(1); solid; q5q(2); dashed,
v5q(3)). Note ~b! that initially the side pulses (u,v) are phase locked top; this antisymmetry is broken when the large energy trans
occurs among the waveguides. Input and output pulses in all the waveguides present a smooth behavior and the emission of radia
takes place at the point of transfer~c!, ~d!, ~e!.
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allow an even broader distribution with respect to what
predicted by our previous analysis. This is expected if
think that the model~9! is based on the symmetric inpu
hypothesis, which is not the case of Figs. 7 and 8. By us
the general set of equations~6! we found that a broader en
ergy distribution is needed to break stability and this indi
tion has been used to get the result of Figs. 7 and 8. N
also thatK had to be lowered; for largerK we observed
quicker but not stable energy transfers. In the small laye
energies among the two values shown in Figs. 7 and 8
happened to find the numerical evidence of the existence
small, though clearly defined, set of initial conditions whi
leads to the steering of the stable state towards the opp
waveguide. An example is shown in Fig. 9. This fact is ve
promising in view of an application of these devices in a
s
e

g

-
te

f
e
f a

ite

optical switching. Note in fact that the tristable switching
solely controlled by changing the energy in the central wa
guide. If this is large, localization is the only outcome; f
intermediate energy levels we found steering on both sid
and for low energies coupling prevails.

Even more remarkable is the fact that this interpretat
of steering and trapping by means of stability energy lev
may be extended to larger arrays, thus explaining why
steering of localized states, besides a symmetry breaking
tial condition, needs also large energies with broad distri
tions, as found numerically in previous works@11,18–20#. In
fact, to steer a localized state to another position of an a
requires an initial energy well above the threshold of stabi
of the final, desired state, since a lot of it is lost in radiati
during the steering process. Moreover, this additional ene
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cannot be initially stored in the same waveguide, since
would strengthen the stability of the initial state. In order
keep the system close to the edge of stability, thus allow
a weak perturbation to realize the switching, a broader
tribution must be used.

As a matter of fact, what ultimately prevents the poten
multistable operation of waveguide arrays is the fact t
states for which the energy is localized in a single wa
guide, in an array of identical waveguides, have appro
mately the same energy threshold of stability. Unless
symmetry is broken, steering would require large distrib
tions of energy among waveguides, as experiment seem
demonstrate@13#. Hence a really multistable switchin
among well localized solutions seems to be excludeda pri-
ori. However, we want to conclude this section with a po
sible suggestion to overcome this problem. As we noted

FIG. 11. ~a! The same as in the preceding figure but w
p350. The final localized state is reached much quicker than in
case of the antisymmetric initial condition. The input energy is l
than that of Fig. 2 and 3 and thus less energy is emitted when
pulse forms and a smoother behavior is observed in the pulse pr
gation ~b!, ~c!.
it
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the preceding section, the creation of a tunable energy
can be obtained in the nonlinearly asymmetrical couple
natural extension would be to realize a structure in whic
stair of energy levels is realized, i.e.,Ecr0.Ecr1
.Ecr2.•••, by means of increasing step by step the no
linearity of the cores. Such a device might be able to att
multistable, cw or pulsed, switching by simply controllin
the input energy. Thus the design and realization of no
devices, such as planar waveguides made of layers of s
conductor with different stoichiometry or coupled glass fib
arrays doped with different volume fractions of semicondu
tors, might disclose interesting experimental and techn
applications in the all-optical signal processing.

ANALYSIS OF THE ANTISYMMETRIC
EXACT SOLUTION

The study of unstable, exact solutions of the NLDC@22#
has revealed interesting dynamics and possibly more reli
applications of that device. For this reason we finally addr
the behavior of an exact solution of the PDE’s~1!, i.e.,

q~1!~z,t !52q~3!~z,t !5Asech~At!exp~ ip !,

q~2!~z,t !50. ~18!

This analytical solution is antisymmetric and resembles
localized state, previously discussed, where the energ
concentrated in the sides. In fact, if we consider the solut
of Eqs. ~6! which corresponds to Eq.~18!, we have
A15A35A5E/4, A250, p1(z)52A2z/2, and p2(z)
5p1(z)2p which, apart form the phase differencep ~in-
stead of 0! amongp1 andp2 , looks like the symmetric one
However, its properties are quite different as the simplifi
model of Eqs.~6! indicates itself. By studying more carefull
the system~6! under this initial condition, we can reveal a
important difference in the equations for the phases. In f
the term proportional toK is zero in the antisymmetric case
but not for the symmetric solution. In the latter case, as
input energy decreases, the first term and that dependin
K become comparable, as previously noted, and the local
state becomes unstable, while for the antisymmetric solut
the term proportional toK remains zero and thusp1 and
p2 stay out of phase during propagation sin
dp1 /dz5dp2/dz for all z. The energy content in the sid
waveguides changes with propagation since thep difference
phase implies thatdA1 /dzÞdA3 /dz but the transfer to the
central waveguide is very slow because the phase differe
is locked top and this causesdA2 /dz to remain very small.

In effect, captured by the variational approach, is a feat
of the governing equation too, if an antisymmetric perturb
tion is applied to this kind of solution. This can be noticed
Fig. 10, where we show the results of numerical integrat
of Eq. ~1! with an initial condition of the type~18!. Note that
the pulses are initially phase locked top, as predicted, and
that at the output we get, once more, a localized stable s
tion, since the energy of the new pulse is larger than
threshold level. However, the dynamics that leads to
transfer is now much slower than in the case of the symm
ric solution, as can be observed by comparing Fig. 10 w
Fig. 11. Hence with the same initial energy of Fig. 10 w
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1122 56ALEJANDRO B. ACEVES AND MARCO SANTAGIUSTINA
might obtain, with symmetric initial conditions, a quicke
transfer and localization of energy in the central wavegui
This effect might be exploited for switching if a short, say
or 4 length units, device is used. Besides the shorter len
the advantage of this device, with respect to the long dev
of Figs. 2 and 3, is that less initial energy is needed. T
decrease in the input energy also contributes to a quicker
smoother formation of the output pulse, as noted by comp
ing Figs. 10 and 11 with Figs. 2 and 3.

CONCLUSIONS

We studied the bistable and tristable soliton switching
collinear arrays of three, linearly coupled, nonline
waveguides. By means of a variational method we found
different energy thresholds of stability are associated to
localized solutions of the device. The gap among these
ergy levels is large enough to compensate radiation loss
thus allows the bistable operation of the device. Numer
solutions of the governing equations confirm the analyti
predictions.

These results can be extended to an asymmetrical no
ear directional coupler, with unequal nonlinear coefficie
The analysis predicts that, through the enhancement of
nonlinear coefficient in one of the waveguides, the ene
gap would be minimal and bistable operation would be
tained at the lowest energy level. The physical energy va
is also expected to be low because of the concomitant
crease of the nonlinearity and of the device length. Semic
ductor planar waveguides and semiconductor doped g
waveguides have been identified as a possible candidat
an experimental realization.

Guided by the reduced set of ODE’s, obtained through
variational approach, we then explored the tristable mod
operation, demonstrating the stable-to-stable switching
pulses among adjacent waveguides is highly hampered
the small separation of the energy thresholds for the stab
among the initial and the final state. However, the mo
indicates that this switching is still possible if the initial e
ergy is divided among the waveguides. The broader distr
tion, in fact, allows the system to store more energy thou
t.
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staying still close to the edge of stability. Thus a symme
breaking perturbation can induce the steering of the pu
towards one side. This prediction has been confirmed
merically and we found that steering in both directions c
be accomplished by simply varying the input energy in t
central waveguide.

This result has been applied to explain why the steering
localized states has proved to be a difficult task in la
coupled arrays. In fact, the steering is submitted to the
lowing requirements: the total initial energy must be w
above the threshold of stability of the final, desired state
a compensation of radiation losses during the steering
broader distribution is needed to store this additional ene
while keeping the system close to the homoclinic orbit wh
separates different regimes; finally a symmetry breaking p
turbation, such as a differential phase, must be applied
‘‘kick’’ the energy in a prefixed direction of the array. Nove
multistable devices, based on designed asymmetries in
nonlinear coefficient of the cores, have also been sugge
on the basis of the analysis.

Eventually we have studied a particular solution of t
governing equation, which presents a peculiar slow dyna
ics, which is captured by the variational model. Applicati
for switching in short length arrays is predicted.

The physical and technical results presented in this pa
are thought to be an improvement of the knowledge of
dynamics of arrays of coupled waveguides. Henceforth, t
are highly relevant in the design of reliable devices for a
optical signal processing.
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